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LOCAL PREDICTIVE INFLUENCE

by

Michael Lavine

University of Minnesota

O. Introduction

This paper gives a specific application of a general paradigm that

was described by Cook (1986), and McCulloch (1985). Let M represent the

ingredients of a statistical problem, M (model, data) where the model

consists of a set of sampling distributions and, for Bayesians, a set of

prior distributions on the sampling distributions. An analysis

technique T maps each M into an answer: T(M) a where a might be a

parameter estimate, a confidence interval, a probability or any other

type of inference.

Let M be a function of a vector w where w
0

is a standard and other

values of w represent perturbations of the standard. For example, in a

regression setting, w may be an n-vector of case weights, an n-vector of

perturbations in the observations, or an nxp matrix of perturbations in

the c.ovariates. For these examples, w0 would be the vector of all 1's,

the 0 vector, and the 0 matrix.

Let D be a discrepancy function between pairs of answers, where

D(a1,a2) e R. The function D measures the influence that a perturbation

scheme has on the outcome of the analysis. Cook (1986) suggests that we

often want to examine the function
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h(w) - D(T(M(w0)), T(M(w))) for w's

in a neighborhood around wo.

Many useful choices for D will satisfy D(al, a2) 1- 0 and D(a, a) -

O. Assume, from now on, that these conditions are met and therefore

that h has a local minimum at w - w0. The shape of h at w
0

is an

indicator of how drastically the inference changes as a function of w,

at least locally.

When h is twice differentiable the shape of h at w
0

can be studied

through the curvature, which in turn can be studied through the

curvature in one direction at a time. Any vector w can be written as w

- rd where r is a scalar and d is a unit vector. The curvature Cd in

the direction d is defined to be

82h(w)
C
d
-

ar
2

Ir-0.

If the maximum curvature, sup Cd, is large then small changes in w
d

can make large changes in the inference. On the other hand, a small

maximum curvature is evidence that the analysis is robust to small

changes in M.

The remaining sections of this paper show to to compute c
d

and

sup Cd for one particular type of analysis, perturbation scheme and

discrepancy function.
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1.2 Framework

Let the data consist of independent random variables Yi, ..., Yip and

p-dimensional covariates X1, ..., Xn. Assume that the normal linear

model with different case weights applies, i.e.,

t

Y.
1

- N(X /3, ai2 )

i

Let X be the matrix (X
1,

X
2

..., X
n

)
t

so the model can be written

Y - N(X
t
0, a

2
S)

where 0 is the pxl vector of regression coefficients, a
2

is a positive

scalar, and S is a positive-definite diagonal matrix. A standard

assumption is that all the case weights are equal. Let w - (w
1,

...,

w
n
)
t
be a vector representing changes from identical case weights, so

that the diagonal of S is :1/(1+001), ..., 1/(1+wn)). The 0 vector is

uo.

Let the prior be the usual improper, non-informative prior

proportional to a
-2

dfida
2

, and suppose that the goal of the analysis is

to compute a predictive density for a future random variable Z at known

covariate w that satisfies

Z - N(w
t
/3, a

2
).
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The Xullback-Leibler directed divergence betwen two densities f and g is

defined to be I(f,g) fzn(f(x) /g(x))f(x)dx. Let the discrepancy

function D be the Kullback-Leibler divergence, so that h(w) - I(f. fw)

where f is the predictive density computed with equal weights and fw is

the predictive density computed with weights (l+wi).

By the linear transformation X*-S
1/2

X and Y
*
-S

1/2
Y we get the new

model Y
*
-N(X

*t
fi,a

2
I) that has the same weight for every case.

he distribution of Z given w, X and Y is the Student distribution

St(n-p,w
t
fl,(1+v)s

2
) where p is the dimension of fl, t

X )
-1
X
*t
Y
*

v-w
t
(X
*t

X
*

)
-1
w, s

2-Y *t
QY

*
/(n-p), Q -1 -X

*
(X
*t
X
*

)
-1

X
*t

is the orthogonal

projection operator parall,,1 to the column space of X
*

and the

distribution St(a,b,c) has density proportional to

dz[1+(z-b)
2
/ac]

-(b+1)/2
(Geisser (1965), Johnson and Geisser (1982)).

By interchanging integration and differentiation and after some

tedious calculus we see that

t
C
d

is d (M1 + M2 + M3 + M4)d

where Ml, M2, M3, and 244 are each rank one matrices. They are defined

in terms of z
t t

(X
t
X)

-1
X
t
and the vector of residuals

QY-r-(r1,...,rn)
t

. The four matrices are

M1 (n-p)/(2(n-p+3)(1+v) 2) [z°z] [z°z]t

M2 - -(n-p)/((n-p+3)(1+v)YtQY) [z°z] [r°r]t

M3 - (n-p)/(2(n-p+3)(YtQY)
2

) [r°r] [r°r]
t

M4 - (n- p)(n- p +l) /((r.- p +3)(l +v)(YtQY)) [r°z] [r°z]t

4
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where ° denotes elementwise multiplication. Section 3 sketches a proof

of this result.

The direction that maximizes the second derivative is the

eigenvector corresponding to the largest eigenvalue of M1 + M2 -6- M3 +

M4. Since each summand has rank 1 the sum has at most rank G. Thus

there is only e four dimensional spice of weight changes that effect the

Kullback-Leibler divergence of the predictive density, at least locally.

2. Example

For a numerical example consider, as does Cook (1986), the Snow

Geese data for observer 1 from Weisberg (1985). The data are X...flock

size estimated by the observer and Yflock size determined from a

photograph. We believe Y to be the true flock size. We are interested

in true flock size Z for flocks which have not been photographed but

whose sizes have been estimated as w by the same observer. Figure 1 is

a scatterplot of the data.

This is a calibration problem. Aitchison and Dunsmore (1975) show

that if

UtheconditionaldistributionofX.given Y., fl and a
2

is

N(fl0 +fl1yi,o
2
),

2) the conditional distribution of w given Z, p and a
2

is

N(O0 +13
1
2,02),

3) the conditional distribution of Z given Y is

St(n-3,V,(1+1/n)E(Yi-17)2/(n-3)) and

4) the prior for fl and a
2

is proportional to a
-2
dada

2

then tae predictive distribution for Z given X, Y and w is St(n-2,a,b)

5
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where

a
+ (Z-50E(Xi-50(Yi-71)

E(X.-7..)2

RSSE(X.-R)2 2b ( 1 +
1
+

(Z-Y)
, ) and

(n-2)-E(Y -7)` Ea.41)4

and

RSS is the residual sum of squares from the regression of Y on X.

Geisser (1985) points out that the Aitchison and Dunsmore result is

identical to the predictive distribution for Z given X, Y klnd w if

1')theconditionaldistributionofYigivenX1,# and a
2

is

N(#001Xi07
2
),

2') the conditional distribution of Z given w, p and a2 is

N(#0+#114,a
2
) and

4') (-4) the prior for # and a
2
is proportional to a

-2
dfido

2
.

Therefore we can solve the calibration problem as a straightforward

linear regression prediction problem by reversing the roles of X and Y.

Let's consider predicting true flock size for three values of

estimated flock size, say wE(30,100,300). For each value of w we can

find d
max

, the direction that maximizes Cd. Figure 8.2 is a plot of the

coordinates of d
max for each value of w as a function of observer count.

Each coordinate of d
max corresponds to one data case. A large

coordinate indicates a case that would cause a large change in the

predictive distribution if its weight were changed slightly.

TheJe plots are similar to a plot by Cook of the coordinates of dmax

6
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as a function of observer count. Cook treated a
2
as known and used a

discrepancy function that depends only on point estimates of p. The

main difference between his plot and our plots is in the value for the

point wher X-500. In Cook's analysis that point corresponded to the

largest coordinate of d
max and would nave been the most influential

under a set of small weight changer. In our analysis the influence of

that point depends on the value of the covariate.

Another interesting feature is that for w -30 the biggest change in

the discrepancy function comes when the points at X-500 and X-250 get

weight changes of the same sign. For w-300 the biggest change comes

when those points get weight changes of opposite signs. This effect may

arise because for w-3C0 changing the weights with opposite signs will

make a large change in the location of the predictive distribution. For

w-30 changing the weights with the same signs will make a large change

in the variance of the predictive distribution.
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APPENDIX B

3. Computation of Curvature

This appendix gives a rough outline and a few intermediate

calculations for proving the result in Section 1. Let r be a scalar and

d-(d1, .,d
n

)
t
be a unit vector. Define

S-
1 + rd1

0

0

1 + r.d
Li

Under the linear model Y-N(Xt/3,(720-1)) with prior a-2dfldo.2 the

predictive distribution for a future observable Z with known covariate w

wt /3,is &t(n-p, w /3, (l+v)s
2
) where

X is nxp

X
*
- S

1/2
X

Y
*
- S

1/2
Y

A

/3 - (X
*t
X
*

)
-1
X
*t
Y
*

v - w
t
(X

*t
X
*

)
-1
w

s
2
- Y

*t
QY

*
/(n-p)

and Q - I - X
*
(X

*t
X
*
)
-1
X
*t

Let f
w be the predictive distribution of Z given above. We want to

compute

a I
2
(f

0'
f
w

)

c
d
-

dr
2

r-0
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where I is defined in Section 1.

Let A = (1 +v)s
2

, AO - Ali_o

A 2
B (z-w

t
p) , Bo - Blr-o.

The first step in computing Cd is to differentiate and evaluate at r--0

inside the integral. The derivatives of terms involving only A0 and B0

are 0 because A
0
and B

0
do not depend on r. Terms involving only A can

come outside of the integral. Letting ' denote differentiation with

respect t) r we get

n-p AA" - (A')
2

C
d

2 A
2

Note that

r -0

n-p+1 ((n-p)A+B) ((n-p)A"+B) - ((n-p)A'+B)
2

I2 ((n-p)A+B)2
f
0
(z)dz

r -0

f
0
(z)dz (n-p+2)(n-p) g(z)dz

,((n-p)A+B)
2

(n-p+3)(n-p+1)(1+v0)
2
(Y

t
q0Y)

where g is the Student (n-p+4, 40, (n-p)A0/(n-p+4)) density and a

subscript 0 indicates evaluation at r-0. Multiplying out the numerator

of the integrand gives

9
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n-p A6:"-(A')21
C
d

-

2 A
2

I r-0

(n-p+2)(n-p)
,

+ (n-p)
2AA" + (n-p)fB"g(z)dzL

2(n-p+3)(1+v0)
2
(Y

t
Q0Y)

+ (n-p)A"fBg(z)dz + fBB"g(z)dz

- (n-p)
2
(A')

2
- 2(n-p)A'fB'g(z)dz

- f(B')2g(z)dz 1
r-0.

Next evaluate B and its derivatives.

fBg(z)dzIr_o - var(g) - (l+v0)YtQ0Y/(n-p+2).

fB'g(z)dz - 0 because the integral is an odd central moment of a

symmetric density.

B" does not involve z and comes outside of the integral. Using

((X
t
SX)

-1
)' - -(X

t
SX)

-1
(X

t
SX)'(X

t
SX)

-1
( Rogers (1980)) and

(X
t
SX)' - X

t
DX where D - diag(di,...,dn) yields

2(w
t
(X

t
X)

-1
X Q0Y)

2
.B"Ir_o -

.1
2
g(z)dzIr_0 - 2

4(w
t
lei') Ir-0 var(g)

- 4(w
t
(X

t
X)

-1
X
t
DQ

0
Y)

2
(l+v

0
)Y

t
Q
0
Y/(n-p+2)

and hema

C
d
- (A')

2
1r-0 (n-p)

3
/(2(n-p+3)(1+v

0
)
2
(wt Q

0
Y)

2
)

+ (w
t
(X

t
X)

-1
X
t
DQ 0Y)

2
(n-p+1)(n-p)/((n-p+3)(1+v 0)(Y

t
Q
o
Y)).

Evaluating A' at r-O and substituting back into Cd yields Cd as the sum
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of four terms.

C
d

n-p

2(n-p+3)(1+v0)2

n-p

(n-p+3)(1+v0)YtQoY

(w
t
(X

t
X)

-1
X
t
DX(X

t
X)

-1
w)

2

(w
t
(X

t
X)

-1
X
t
DX(X

t
X)

-1
w) (Y

t
Q
0
DQ

0
Y)

n-p
+ (Y

t
Q DQ Y)

2

2(n- p +3)(Y
0 0

(n-p+1) (n-p)
+ (w

t
(X

L.

X)
-1
X
t
DQ

0
Y)

2

(n-p+3)(1+v0)(Y
t
Q0Y)

Let e Q0Y, the vector of residuals.

Let m X(X
t
X)

-1
w.

Let ° denote elementwise multiplication. Then

Cd dt ( Ml + M2 + M3 + M4 ) d where

Ml.

n-p

2(n-p+3)(1+v0)2

-( n-p )

(m°m)(m°m)t

M2 (m°m)(e°e )
(n-p+3)(1+v0)Y Q0Y

M3
n-p

2(n-p+3)(YtQ0Y)2

(n -p +l) (n-p)

M4 (e°m) (e°m )t
(n-p+3)(1+v0)(Y Q0Y)

t

(e°e) (e°e )t
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